Conserved features in papillomavirus and polyomavirus capsids.

نویسندگان

  • D M Belnap
  • N H Olson
  • N M Cladel
  • W W Newcomb
  • J C Brown
  • J W Kreider
  • N D Christensen
  • T S Baker
چکیده

Capsids of papilloma and polyoma viruses (papovavirus family) are composed of 72 pentameric capsomeres arranged on a skewed icosahedral lattice (triangulation number of seven, T = 7). Cottontail rabbit papillomavirus (CRPV) was reported previously to be a T = 7laevo (left-handed) structure, whereas human wart virus, simian virus 40, and murine polyomavirus were shown to be T = 7dextro (right-handed). The CRPV structure determined by cryoelectron microscopy and image reconstruction was similar to previously determined structures of bovine papillomavirus type 1 (BPV-1) and human papillomavirus type 1 (HPV-1). CRPV capsids were observed in closed (compact) and open (swollen) forms. Both forms have star-shaped capsomeres, as do BPV-1 and HPV-1, but the open CRPV capsids are approximately 2 nm larger in radius. The lattice hands of all papillomaviruses examined in this study were found to be T = 7dextro. In the region of maximum contact, papillomavirus capsomeres interact in a manner similar to that found in polyomaviruses. Although papilloma and polyoma viruses have differences in capsid size (approximately 60 versus approximately 50 nm), capsomere morphology (11 to 12 nm star-shaped versus 8 nm barrel-shaped), and intercapsomere interactions (slightly different contacts between capsomeres), papovavirus capsids have a conserved, 72-pentamer, T = 7dextro structure. These features are conserved despite significant differences in amino acid sequences of the major capsid proteins. The conserved features may be a consequence of stable contacts that occur within capsomeres and flexible links that form among capsomeres.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The structure of avian polyomavirus reveals variably sized capsids, non-conserved inter-capsomere interactions, and a possible location of the minor capsid protein VP4.

Avian polyomavirus (APV) causes a fatal, multi-organ disease among several bird species. Using cryogenic electron microscopy and other biochemical techniques, we investigated the structure of APV and compared it to that of mammalian polyomaviruses, particularly JC polyomavirus and simian virus 40. The structure of the pentameric major capsid protein (VP1) is mostly conserved; however, APV VP1 h...

متن کامل

Possible role for cellular karyopherins in regulating polyomavirus and papillomavirus capsid assembly.

Polyomavirus and papillomavirus (papovavirus) capsids are composed of 72 capsomeres of their major capsid proteins, VP1 and L1, respectively. After translation in the cytoplasm, L1 and VP1 pentamerize into capsomeres and are then imported into the nucleus using the cellular alpha and beta karyopherins. Virion assembly only occurs in the nucleus, and cellular mechanisms exist to prevent prematur...

متن کامل

Chaperone-mediated in vitro disassembly of polyoma- and papillomaviruses.

Hsp70 chaperones play a role in polyoma- and papillomavirus assembly, as evidenced by their interaction in vivo with polyomavirus capsid proteins at late times after virus infection and by their ability to assemble viral capsomeres into capsids in vitro. We studied whether Hsp70 chaperones might also participate in the uncoating reaction. In vivo, Hsp70 co-immunoprecipitated with polyomavirus v...

متن کامل

The capsid of small papova viruses contains 72 pentameric capsomeres: direct evidence from cryo-electron-microscopy of simian virus 40.

The three-dimensional structure of the simian virus 40 capsid is remarkably similar to the structure of the polyoma empty capsid. This similarity is apparent despite striking differences in the methods used to determine the two structures: image analysis of electron micrographs of frozen-hydrated samples (SV40 virions) and an unconventional x-ray crystallographic analysis (polyoma empty capsids...

متن کامل

Papillomavirus-like particles induce acute activation of dendritic cells.

The role of viral structural proteins in the initiation of adaptive immune responses is poorly understood. To address this issue, we focused on the effect of noninfectious papillomavirus-like particles (VLPs) on dendritic cell (DC) activation. We found that murine bone marrow-derived dendritic cells (BMDCs) effectively bound and rapidly internalized bovine papillomavirus VLPS: Exposure to fully...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular biology

دوره 259 2  شماره 

صفحات  -

تاریخ انتشار 1996